
HT-Graph : Heterogeneous Continuous-Time
Dynamic Graph Representation Learning using

Neighbor-store with Restart
Nilanjana Debnath

Dept. of CSE
Indian Institute of Technology, Palakkad

Palakkad, India
112113001@smail.iitpkd.ac.in

Unnikrishnan C
Dept. of CSE

Indian Institute of Technology, Palakkad
Palakkad, India

unnikrishnan@iitpkd.ac.in

Abstract—Graphs are integral to model real-world complex
systems like social networks, citation networks, transaction net-
works etc. Real-world graphs are mostly heterogeneous, contin-
uously evolving dynamic graphs (i.e. Heterogeneous continuous-
time dynamic graph - HCTDG). Modeling HCTDGs requires ef-
fective representation learning, which is difficult because of their
entangled structural and temporal dependencies. We introduce
HT-Graph, a novel framework aimed to improve link prediction
in HCTDG graphs. HT-Graph addresses scalability and compu-
tational inefficiencies while focusing on enhancing link prediction
accuracy. As formation of new links between nodes depends
on their neighborhood, HT-Graph introduces a neighbor-aware
memory module (i.e. memory module with a neighbor-store)
that stores and updates local neighborhood information of each
node efficiently for faster calculation of structural information,
eliminating redundant computations required for traditional
neighborhood sampling. To introduce parallelism, we used a
neighbor-aware restarter to restart the training at any timestamp
using interaction history. During training, the restarter module
resets memory states at multiple timestamps and learns to mimic
the encoder through the knowledge distillation process. This elim-
inates sequential dependencies, enabling HT-Graph to capture
temporal dynamics and structural heterogeneity while ensuring
scalability. HT-Graph outperforms state-of-the-art models in link
prediction, providing higher scalability, efficiency, and better
predictive performance even with limited data.

Index Terms—Heterogeneous dynamic graph, continuous-time
dynamic graph, CTDG, HCTDG.

I. INTRODUCTION

Graphs are everywhere, modern real-world systems—social
networks, financial transactions, transportation grids, and bi-
ological interactions—are inherently dynamic, heterogeneous,
and temporally evolving. These systems are best modeled as
heterogeneous continuous-time dynamic graphs (HCTDGs),
where nodes and edges change continuously over time with
diverse interaction types. Modeling an HCTDG requires ef-
fective representation learning that captures the complex and
entangled structural and temporal dependencies. Computation
on heterogeneous graphs comes with the additional complexity
of establishing the correlation between different types of rela-
tions. In this work, we present HT-Graph for link prediction on
heterogeneous continuous-time dynamic graphs (HCTDGs).

The local neighborhood of two nodes determines whether
or not they are likely to interact in the near future. CAWN
[1], NAT [2] utilized the neighbor aggregation in graph repre-
sentation learning. However, these models are not suitable for
parallelization across multi-GPU machines. TIGER [3] uses
restarter to scale CTDG models to multi-GPU machines, but it
was built on top of TGN [4] and fails to utilize the importance
of neighborhood in link prediction. HT-Graph solves both
problems and outperforms them. The novel contributions are
mentioned below.
− Neighbor-Aware Memory Module: HT-Graph intro-

duces a memory module that stores and updates local
neighborhood information, improving efficiency by elim-
inating redundant neighborhood sampling and capturing
both structural and temporal dependencies effectively.

− Parallel Training with Neighbor-Aware Restarter: HT-
Graph utilizes a neighbor-aware restarter to parallelize
training across timestamps, breaking sequential temporal
dependencies and enhancing scalability, while leveraging
knowledge distillation for improved learning of temporal
dynamics.

− Improved Link Prediction and Scalability: By com-
bining the above approaches, HT-Graph offers superior
link prediction accuracy, scalability, and computational
efficiency, outperforming existing models in dynamic,
heterogeneous graph tasks.

HT-Graph is able to outperform state-of-the-art models like
NAT [2], and TIGER [3] for different input graphs on single
GPU and multi-GPU machines.

II. BACKGROUND

Unlike homogeneous graphs, where all nodes and edges
are of the same type, heterogeneous CTDG accommodates
nodes and edges with different types and attributes. Each node
and edge type may have its own set of features, representing
various aspects of the network entities.

HCTDG can be represented as a type-aware timestamped
event list. G = {x(t1), x(t2), . . .}, where each event
xi = {(ui, vi, ti, ri)} occurs at a specific time ti. G =

{(u1, v1, t1, r1), (u2, v2, t2, r2), . . .}, where ui and vi repre-
sents node ids of the i-th interaction, ti represents the times-
tamp(t1 ≤ t2 ≤ . . .) and ri is metapaths denoting the type of
an event. We represent the event as eruv(t) which represents
interaction between node u and v of type r at time t.

Effective representation learning of temporal networks aims
to accurately and efficiently predict the network’s evolution
over time. The goal is to develop a model that utilizes
historical data prior to time t, i.e., {(u′, v′, t′, r′) ∈ E | t′ < t},
to accurately and efficiently predict the existence of a temporal
link between two nodes at time t, i.e., (u, v, t, r). To achieve
this, HT-Graph introduces a novel model for link prediction
on HCTDGs, leveraging innovative methods such as neighbor-
aware memory module and neighbor-aware restarter module.

III. RELATED WORK

Learning dynamic node representations is crucial for model-
ing temporal graphs. DeepCoevolve [5], introduced dynamic
node representations via recurrent networks, but faced chal-
lenges like piecewise constant representations and staleness.
Later methods, including JODIE [6] and DyRep [7], improved
time-awareness and neighbor information aggregation using
attention layers. JODIE [6] employs projection operations for
time-awareness, while DyRep [7] uses attention layers for
neighbor information aggregation. These methods typically
maintain dynamic node states, integrated as memory modules
in approaches like TGN [4].

Papers like Dy-HAN [8], Dy-HATR [9] and Dy-HGCN
[10] focus on heterogeneous dynamic graphs, using snapshot-
based approaches to learn spatial and temporal embeddings
through heterogeneous graph neural networks like R-GCN
[11] and HAT [12]. They capture temporal evolution with
recurrent neural networks like RNN [13], LSTM [14], or
GRU [15]. These algorithms are unsuitable for CTDGs, where
graphs change faster than the time required for one pass to
compute node embeddings. THAN [16] addresses the problem
of heterogeneity in CTDG using type-aware self-attention.

In CTDGs, node interactions depend on local neighbor-
hoods, yet many models overlook explicit neighbor awareness.
CAW-N [1] and NAT [2] address this by focusing on structural
information. CAW-N [1] suffers from high computational
costs due to extensive random walk sampling and CPU-based
structural feature construction, limiting parallelism. NAT [2]
improves efficiency with neighborhood representations and N-
caches but still struggles with scalability.

APAN [17], TGL [18], and TIGER [3] are scalable tem-
poral GNNs designed to handle dynamic graphs efficiently.
APAN [17] stores neighbor states for local aggregation but
faces a space-time trade-off. TGL [18] optimizes GPU-CPU
communication for efficiency in large-scale temporal graph
processing, while TIGER [3] enhances the training process by
introducing a restart mechanism.

Table I describes the limitations of related works. Our
work HT-Graph ticks all the boxes of CTDGs, Heterogeneous,
Memory-based, Neighbor-aware, and Multi-GPU scalable al-
gorithms to handle real-world CTDGs.

TABLE I
SUMMARY OF RELATED WORK

Criteria D
yH

A
N

D
yH

AT
R

D
yH

G
C

N

D
yH

N
E

T
G

AT

T
G

N

T
H

A
N

A
PA

N

C
AW

-N

N
AT

T
IG

E
R

T
G

L

H
T-

G
ra

ph

CTDGs X X X X ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Heterogeneous ✓ ✓ ✓ ✓ X X ✓ X X X X X ✓

Memory-based X X X X X ✓ ✓ ✓ X ✓ ✓ ✓ ✓

Neighbor-store X X X X X X X X X ✓ X X ✓

Multi-GPU X X X X X X X X X X ✓ ✓ ✓

IV. HT-GRAPH: MODEL AND IMPLEMENTATION

HT-Graph for HCTDG representation learning can be con-
ceptualized as an encoder-decoder pair. In this setup, the
encoder maps an HCTDG to node embeddings, while the
decoder performs task-specific predictions (i.e. link predic-
tion). The encoder takes a HCTDG as input and generates
temporal representations of the nodes. In order to calculate
the temporal node embeddings, a neighbour-aware memory
module is used. The neighbor-aware memory module consists
of 2 main components (i.e., node memory and neighbor-store).
The node memory tracks the evolution of node embeddings
and memorizes the compressed representation of all past
interactions the node was part of. The neighbor-store module
stores k-hop temporal neighborhood information for each node
present in the graph. The decoder then decodes the node
embeddings to perform the link prediction task using binary
classification loss (i.e., link or non-link). This training is done
in a self-supervised manner.

To introduce parallelism in the model training, restarter
module is used. The restarter re-initializes the memory using
a small set of historical events. Thus, the model training can
now start at any timestamp, enabling it to run in parallel by
chunking the data into multiple chunks and processing them
simultaneously.
HT-Graph addresses the challenges of HCTDGs by improving:
(a) prediction performance through heterogeneity and
neighbor-aware learning,
(b) computational efficiency via the neighbor-store module,
(c) enabling parallelism through the neighbor-aware restarter
module.

Restarter

Message Generation
(self_attention)

Heterogeneous
event Encoding

Neighbor-aware
memory module

message aggregation
(using GRU)

 Update Neighbor-
aware Memory

(update node memory
and neighbor memory)

Fetch History
Calculate

Distillation Loss

restarting
loss L2

Decoder
Temporal

Embedding

Loss L1
fetch memory

(old)

Batch of Events

heterogeneous events
batch of events

Update
Memory

Update
Neighbor-store

neighbor-store updater
restarter operations

loss
decodercore memory operation

neighbor aware memory module

Fig. 1. HT-Graph model overview

Fig.1 illustrates the HT-Graph flow. For an input batch of
heterogeneous events, we use the heterogeneous event encoder
(ref:IV-A), generate messages for each event, and aggregate

them for nodes with multiple messages. These aggregated mes-
sages update the neighbor-aware memory and neighbor-store
(refs:IV-D, IV-C). The final temporal embedding (ref:IV-E) is
generated, and the decoder (ref:IV-F) computes the encoding
loss. Meanwhile, the restarter (ref:IV-G) calculates the distil-
lation loss. Details of these modules follow.

A. Heterogeneous Event Encoding (HEE)
To efficiently process heterogeneous graphs with multiple

node and edge types, we simplify their structure by transform-
ing them into graphs with only edge-type heterogeneity. This
transformation is performed as a pre-processing step using a
meta-path algorithm [12], redefining edge types in the format:
sourceNodeType-edgeType-destinationNodeType.

For each event eruv(t) , the event encoder integrates:
1) Type Encoding: One-hot encoded event type ohe(r).
2) Time Encoding: Timestamp t is MinMax normalized

as t′, then mapped to a dt-dimensional space using the
temporal encoding function: Φ(t′) = cos(t′ × ω), where
t′ = t−min(t)

max(t)−min(t) and ω is a basis frequency matrix that
transforms timestamps into a high-dimensional representation,
capturing diverse temporal patterns.

Combining type and time encoding produces the final
heterogeneous edge embedding. The final event embedding
is formed by concatenating the feature vector FV (eruv(t)),
interaction encoding ohe(r), and temporal encoding Φ(t′),
then processed through a one-layer MLP:

¯eruv(t) = MLP (FV (eruv(t))||ohe(r)||Φ(t′)) (1)

This approach effectively captures both spatial and temporal
information of each event in a heterogeneous graph, enabling
comprehensive temporal analysis.

HEE improves computational efficiency by simplifying
graph structure, reducing redundant computations, using
lightweight temporal encoding, and leveraging an MLP-based
compact event embedding for faster processing.

B. Neighbor-Aware Memory Module

The neighbor-aware memory module consists of two main
components: Node Memory and Neighbor-Store. The Node
Memory maintains node embeddings, encoding past interac-
tions, while the Neighbor-Store tracks the k-hop temporal
neighborhood of each node with a limited size of [x, y], where
x and y denote the maximum number of 1-hop and 2-hop
neighbors, respectively.

1. Node Memory: To capture both spatial and temporal dy-
namics in a continuous-time dynamic graph, a GNN typically
computes spatial embeddings per snapshot, while temporal
dependencies are modeled using LSTMs or GRUs. However,
frequent GNN updates after every event are computationally
expensive. Instead, we use a memory module that allocates
a small memory unit to each node, updating its state upon
interaction using a gated recurrent unit(GRU) [15], ensuring
learning from its interaction history.

For an event eruv(t) between nodes u and v at time t, each
node u has two representations at time t: hu(t

−) (just before

the event) and hu(t
+) (just after the event). The two memory

units, M+ and M−, store the representations hu(t
+) and

hu(t
−), respectively. These memory values are initially set to

zero vectors and are updated over time as new events occur.
This ensures the model remains inductive, accommodating
unseen nodes.

2. Neighbor-Store: The neighbor-store module stores the
fixed-size k-hop temporal neighborhood information for each
node. It uses a dictionary with node ID as the key to store the
neighbors with which each node has interacted, along with the
timestamp and event type.

Given that social networks often follow a six-degree sep-
aration rule, storing 2-hop neighbors is generally sufficient
for representation learning, avoiding overfitting. Instead of
aggregating all neighbors, we impose a size constraint, re-
taining only a fixed number per hop (e.g., 32 first-hop and 16
second-hop neighbors). This strategy aligns with GraphSAGE-
style sampling, reducing computational costs and memory
overhead. The store follows a FIFO policy, replacing the oldest
neighbors with new ones as the graph evolves.

For each interaction event, the neighbor-aware memory
module updates the neighbor-store and node memory using
two distinct updaters: Neighbor-store updater and memory
updater.

C. Neighbor-Store Updater

The neighbor-store(i.e. NS) of each node is a dictionary
where the node ID serves as the key, and values include event
type and timestamp. After every interaction event between two
nodes, their respective neighbor-stores are updated.

1 and 2-hop neighbor update: For an event eruv(t), node
v is added as a 1-hop neighbor of u, and the 2-hop neighbors
of u are updated with the 1-hop neighbors of v, and vice versa.

k-hop Neighbor Update: For each node w in the (k−1)-
hop neighbors of v, i.e., NS(k−1)

v :
− If w is already in u’s k-hop neighbors (NS(k)

u), update its
event type and timestamp:

NS(k)
u [w] = (r, t) (2)

− If w is not present and NS(k)
u has space, add w with its

event type and timestamp. Otherwise, replace the oldest
entry using FIFO:

NS(k)
u [w] = AddOrReplace(NS(k−1)

u [w]) (3)

D. Memory updater

Memory update is an essential step to ensure that each
node’s memory is consistently updated, reflecting both its own
interactions and the influence of its neighbors.

The interaction events are first converted to messages using
the message function and then aggregated by the message
aggregator and finally the node memory is updated using the
memory updater.

The message function encodes the node’s past informa-
tion, edge/interaction information, and frequency information
together, which is used later to update the memory state. To

1

3

4

2

2-hop

1-hop

Key value

(r1,t1)

(r1,t2)

(r2,t3)

2 3 4

fe
tc

h
 n

ei
gh

b
o

rs

2 (t’)

3 (t’)

4 (t’)

M-

M-

M-

2 (t’)

3 (t’)

4 (t’)

M+

M+

M+

fe
tc

h
 n

ei
gh

b
o

r
m

em
o

ry
(o

ld
) 3 (t)

4 (t)

2 (t)M-

M-

M-

2 (t)

3 (t)

4 (t)

M+

M+

M+

1 (t’)M+ M2 (t’)upd +

1 (t’)M-upd M2 (t’)-

1 (t’)M+ M (t’)upd +
4

.....
...

M+
1M-

1
dual memory

neigh-store

1 (t’)M-
1 (t’)M+

1+ (t)M

1 (t)M-

fetch memory
(old) 1 (t’)M+ m1(t1)

_
upd

n
ei

gh
b

o
r

m
em

o
ry

u
p

d
a

te

replace M-

n
o

d
e

m
em

o
ry

u
p

d
a

te

1 2

2 3

t1

t2

2 4
t3

r1

r1

r2

batch

m1(t1)

m2(t1)

m2 (t2)

m3(t2)

m2(t3)

m4(t3)

m1(t1)

m3(t2)

m2(t3)

m4(t3)

msg agg

_

_

_

_

Messages
Aggregated Messages

1

2 3

4t1

t2

t3

r1

r1

r2

Input Graph
(timestamped) (as event-list)

Fig. 2. Underlying memory operations of memory updater

generate messages mu(t) and mv(t) for node u and v for
an interaction event eruv(t), the message function uses nodes
u and v’s memory status just before time t, i.e. M−

u (t) and
M−

v (t), encoded event eruv(t), and time difference information
between the current time t and node’s last interaction time e.g.
t′u.

mu(t) = msgs(M
−
u (t),M−

v (t), eruv(t),Φ(t− t′u))

mv(t) = msgd(M
−
v (t),M−

u (t), eruv(t),Φ(t− t′v))
(4)

If the same node u participates in multiple events in the
same batch, the message aggregator is used to aggregate node
u’s information which is further used by the memory updater
to update its memory.

mu(t) = agg ({mu(ti) | ∀i, eruv(ti) involves u}) (5)

The memory updater updates the memory states of nodes
in two steps, ensuring information propagation throughout the
graph. Initially, it retrieves memory states M−

u (t′) and M+
u (t′)

for node u from the last update time t′. The current memory
state M−

u (t) is set as M+
u (t′), effectively shifting memory

forward. The new memory M+
u (t) is computed using an

update function (e.g., GRU) with inputs M−
u (t) and aggregated

messages mu(t):

M+
u (t)← upd(M−

u (t),mu(t)) (6)

Next, the updates are propagated to neighbors w ∈ NSu.
Neighbor memory states M−

w (t) and M+
w (t) are updated using

the old memory values M−
u (t′) and M+

u (t′):

M−
w (t)← upd(M−

w (t′),M−
u (t′))

M+
w (t)← upd(M+

w (t′),M+
u (t′))

(7)

By updating both the current node and its neighbors, the
memory update algorithm ensures that information is propa-
gated throughout the graph, capturing the dependencies and
interactions between nodes.

E. HT-Graph Temporal Embedding Generation

The temporal embedding module focuses on computing the
node embeddings for prediction tasks without altering memory
states.

It generates the temporal embedding zu(t) for node u at a
specific time t. We adopt the L-layer temporal graph attention
layer from TGAT [19].

Initial Embedding:
The initial temporal embedding z0u(t) is computed by ag-

gregating K-hop neighbor information in a heterogeneous
manner following HAN [12]. The process starts by retrieving
the memory states of u and its neighbors from the memory
module. Neighbor embeddings are transformed, weighted by
edge attention α

(k,r)
uw , and aggregated with semantic weights

βk
r as follows:

z0u(t) = σ

 K∑
k=1

∑
r∈RE

βk
r

∑
w∈NS

(k,r)
u

α(k,r)
uw WM−

w (t)

 , (8)

where M−
w (t) represents the memory state of neighbor w just

before time t, W is the transformation matrix, and K is the
maximum hop distance stored in the neighbor-store.

Multi-Layer Temporal Embedding
The embedding is refined across L layers to capture higher-

order dependencies and temporal dynamics. The input to
the l-th layer includes u’s representation from the previous
layer, z(l−1)

u (t−), the current timestamp t, and the neighbor-
hood representations of u, z

(l−1)
1 (t−), ..., z

(l−1)
N (t−), along

with their corresponding timestamps t1, ..., tN and features
eu1(t1), ..., euN

(tN) for the interactions forming edges in u’s
temporal neighborhood. For a multi-layer temporal embedding
generation, we use a multi-head attention model as follows.

q(l)u = z(l−1)
u ∥Φ(0),

K(l)
u = V (l)

u =


z
(l−1)
1 (t)∥ē1(t1)∥Φ(t− t1)

...
z
(l−1)
N (t)∥ēN (tN)∥Φ(t− tN)

 ,

z̃(l)u (t) = multiheadAttention(l)
(
q(l)u ,K(l)

u , V (l)
u

)
,

z(l)u (t) = MLP
(
z(l−1)
u (t)∥z̃(l)u (t)

)
.

(9)

where Φ(t − ti) encodes temporal decay, and ēi(ti) repre-
sents edge features. These constructions ensure that temporal
and structural information are embedded effectively. Each
attention head captures diverse interaction patterns, improving
the model’s ability to generalize. The final MLP layer forms
a residual connection to calculate z

(l)
u (t) to ensure that ear-

lier layer information is preserved while enabling non-linear
transformations.

F. HT-Graph Temporal Link Prediction

Temporal link prediction is formulated as a self-supervised
task, where we leverage the joint neighborhood structure to
predict future links. Existing models like CAWN [1] use

online random-walk sampling, which is inefficient for parallel
processing. Instead, we adopt a pre-sampled neighborhood
approach, similar to NAT [2], but derive joint representations
using a dual memory module and temporal embeddings instead
of storing edge-specific features.

Distance Encoding (DE) For a given link (u, v, t, r), we
identify joint neighbors a ∈ (NSt

u ∪NSt
v) and compute their

distance encoding. DE contains a binary vector representation
of size k (where k denotes the maximum hop distance in the
neighbor-store module) with neighbor node a’s hop/distance
information. The k-th element of DE is 1 if a belongs to
NS

(k)
u , otherwise 0. For example, if v is a 1-hop neighbor of

node u, then: DEu(v) = [0, 1, 0]. We obtain the joint distance
encoding by performing a bitwise AND operation on DEu(a)
and DEv(a): For example, DEuv(a) = [0, 1, 0] ⊕ [0, 1, 0]
indicates a is a common 1-hop neighbor of nodes u and v.

DEt
uv(a) = DEt

u(a)⊕ DEt
v(a) (10)

This operation highlights common neighbors and their prox-
imity, which is crucial for modeling the likelihood of link
formation (e.g., through triadic closure).

Neighbor Representation Aggregation To enhance the
joint neighborhood representation, we retrieve temporal em-
beddings from the memory store. Each neighbor’s represen-
tation is computed as: ht

u[a] = hu(t
′) ∥ ha(t

′) ∥ typetua
where hu(t

′) is the memory state of u, ha(t
′) is the state

of neighbor a, and typetua encodes the interaction type. This
process ensures that both structural and temporal aspects are
captured. We then aggregate the neighbor embeddings while
preserving hop-level information:

N t
uv(a) =

2∑
k=0

∑
w∈{u,v}

hw[a]
t(k) · χ[a ∈ NS(k)

w] (11)

This ensures that only common neighbors at the same hop
distance contribute to the aggregation.

Joint Representation and Prediction We construct the
final joint neighborhood representation by concatenating the
distance encoding and aggregated features:

J t
uv = {DEt

uv(a) ∥ N t
uv(a) | a ∈ (NSu ∪NSv)} (12)

We use an attention-based mechanism to aggregate the col-
lected edge representations J t

uv for the link prediction task.

puv ← MLP(
∑

j∈Jt
uv

γjMLP(j)) (13)

where the attention weights γj are computed as: {γj} ←
softmax

(
{wT MLP(j) | j ∈ J t

uv}
)

The probability puv repre-
sents the likelihood of a future edge (u, v, t). The final training
objective minimizes binary cross-entropy loss:

L1 = − log puv(t)− log(1− pux(t)) (14)

where puv(t) represents the probability of an observed edge,
and pux(t) is the probability of a sampled negative edge. This
optimization ensures that the model maximizes the likelihood
of true edges while minimizing false connections.

G. HT-Graph Restarter

To enable parallelism during model training, we use the
restarter module, which re-initializes node memory using a
limited set of historical events, allowing training to start
from any timestamp. This enables data to be split into in-
dependent chunks for concurrent processing, boosting training
efficiency and scalability. The restarter module was introduced
in TIGER [3], but it lacked neighbor awareness. In HT-Graph,
we introduce the Neighbor-aware Restarter module, which
outperforms both the static and transformer restarters [3] in
predictive performance.

The restarter efficiently estimates M̂−
u (t) and M̂+

u (t), repre-
senting the memory state of node u just before and after time t,
equivalent to M−

u (t) and M+
u (t). Leveraging knowledge dis-

tillation, these estimates enable efficient memory initialization,
where the restarter learns from the encoder.

Neighbor-Aware Restarter Architecture
The Neighbor-Aware Restarter, built on the Sequence

Restarter (Transformer Restarter) from TIGER [3], improves
memory estimation by incorporating both historical event
sequences and neighboring node information using graph
attention. This approach enhances the accuracy of memory
state estimations.

The Neighbor-Aware Restarter integrates temporal event
sequences with graph structure in three stages:

1. Heterogeneous Neighborhood Aggregation To restart
the training from any timestamp t, the restarter module
only takes a small list of history interactions hist(t) =
{euv(ti)}mi=1 before time t with m as history length. For
each node u involved in hist(t), we aggregate multi-relation
neighbor information using a Heterogeneous Graph Attention
Network (HAN) [12]:

neigh aggu = σ

 K∑
k=1

∑
r∈R

β(k)
r

∑
v∈η

(k)
r (u)

α(k,r)
uv WrM

±
v (t′)


(15)

where: η
(k)
r (u) denotes the set of k-hop neighbors of u

derived from hist(t) under relation r with K as the maximum
hop distance. M±

v (t′) is the memory state of neighbor v just
before time t. Wr is the transformation matrix for relation r.
α
(k,r)
uv and β

(k)
r represents node-level attention and semantic

attention respectively and σ(·) represents a non-linear activa-
tion function.

2. Temporal-Event Encoding: Concurrently, we process
node u’s historical events {euv(ti)}mi=1 before time t via:

a) Event Augmentation: Each event euv(ti) is encoded as:

xi = vu ∥ vv ∥ ēuv(ti) ∥ Φ(t− ti), (16)

where vu, vv are node embeddings, ēuv(ti) is the HEE en-
coded event, and Φ is the time encoding function.

b) Transformer Encoding: The sequence {xi}, containing
only edges where node u is a participant, is processed by a
Transformer to produce a node u’s history-aware representa-
tion:

hhist
u (t′) = Transformer({xi}). (17)

Since Transformers are position-agnostic, we include a time
encoding Φ(t− ti) in each event embedding xi (ref eq 16) to
capture temporal order.

3. Fusion and State Estimation: The neighbor aggregation
and historical encoding are combined to estimate node u’s
memory states:

M̂−
u (t) = hhist

u (t′) + neigh aggu,

M̂+
u (t) = MLP(M̂−

u (t) ∥ x0),
(18)

where x0 = vu ∥ vv ∥ ēuv(t) ∥ Φ(0), x0 encodes the current
event euv(t):

Knowledge Distillation To align the restarter outputs with
the encoder, a distillation loss is minimized:

L2 =
∑
u,v

(∥M+
u (t)− M̂+

u (t)∥22 + ∥M+
v (t)− M̂+

v (t)∥22

+ ∥M−
u (t)− M̂−

u (t)∥22 + ∥M−
v (t)− M̂−

v (t)∥22)
(19)

Here, ∥ · ∥2 denotes the squared ℓ2-norm.
Frequent restarts disrupt long-term pattern learning, while

infrequent restarts hinder adaptation to updates. Balancing
both is key for optimal performance.

H. Training

During training, HT-Graph jointly optimizes the encoder
and restarter using the link prediction loss L1 (Eq. 14) and
distillation loss L2 (Eq. 19). For multi-GPU parallelism,
the edge set is divided into time-based chunks. Memory is
initialized to zero and restarted for each chunk (except the first)
using the previous chunk’s data. Each chunk is then trained
independently with its corresponding memory. The training
steps for a single chunk are detailed in Algorithm .1.

Algorithm .1: HT-graph training
Input: Edge set E, memory M+,M−

1 Function TrainHTGraph(Ek,M
+
k ,M−

k):
2 foreach batch do
3 for each euv(t) ∈ batch do
4 M+,M− ← encoder(M+,M−);
5 puv(t), pux(t) = decoder(M−);

// Compute temporal link
prediction loss

6 L1 = − log puv(t)− log(1− pux(t))

ĥ(t′)−, ĥ(t′)+ = restarter(Ek(t
′)) ;

// Compute distillation loss
7 L2 =

∑
u,v(∥M+

u (t)− M̂+
u (t)∥22 +

∥M+
v (t)− M̂+

v (t)∥22 + ∥M−
u (t)−

M̂−
u (t)∥22 + ∥M−

v (t)− M̂−
v (t)∥22)

8 end
9 end

V. EXPERIMENTAL EVALUATION

A. Experiment Setup

1. Data preparation: We evaluate HT-Graph on 11 datasets
to demonstrate its superiority over baselines. To handle het-
erogeneous graphs, we apply HEE (ref:IV-A), simplifying the

Chunk 1 Chunk 2 Chunk 3 Chunk 4

Chunk 1

Chunk 2

Chunk 3

Chunk 4

Memory

Memory

Memory

Memory

Restarter

Process 1

Process 2

Process 3

Process 4

Low System Pressure

High Parallelism

(c)

Fig. 3. Training in parallel setup(multi-GPU machine) using restarter

graph while preserving crucial relationships. Data preparation
time is not considered.

TABLE II
DATASET STATISTICS

Dataset Nodes Edges Edge Feats Rel-types Node Degree
Min Max Avg

H
om

og
en

eo
us

Tgbl-wiki-v2 9,227 157,474 172 1 1 1,937 17
Reddit 10,985 672,447 172 1 1 58,727 61
Enron 184 125,235 172 1 2 21,512 680

SocialEvolve 74 2,099,519 0 1 257 124,565 28,372
UCI 1,899 59,835 172 1 1 1,546 31

tgbl-coin 638,486 22,809,486 0 1 1 1,647,650 36

H
et

er
og

en
eo

us AskUbuntu 159,316 964,437 0 3 1 12,316 6
MathOverflow 24,818 506,550 0 3 1 11,309 20

Movielens 2,626 100,000 0 5 1 685 38
SuperUser 194,085 1,443,339 0 3 1 27,637 7

StackOverflow 2,601,977 63,497,050 0 3 1 194,806 24

2. Learning Modes: HT-Graph is trained in both trans-
ductive and inductive learning modes. Transductive learning
makes predictions for known nodes, while inductive learning
generalizes patterns to unseen nodes and edges. For evaluation,
a chronological train-validation-test split (70%, 15%, 15%) is
used. In transductive learning, the full training set is used,
while for inductive learning, 10% unique nodes are sampled
from validation and test datasets.

3. System and software information: Experiments were
conducted on systems with an Intel Xeon CPU and two
NVIDIA GeForce RTX 2080 Ti GPUs, using Python 3.10,
PyTorch 2.1.0, and CUDA 12.0 for GPU acceleration. A two-
GPU setup was used for evaluation to assess the scalability
and performance of HT-Graph.

4. Baseline Models and HT-Graph Varients: We select
TGN [4], NAT [2], and TIGER [3] as our baseline models.
Static GNNs like GAT [20] and other methods like DyHAN
[8] are not considered, as they are inferior to the above
models. We propose four variants of HT-Graph: R-st, R-seq,
R-ngh, and the full HT-Graph model. R-st uses a static
restarter, R-seq employs a sequence-based restarter, and R-
ngh integrates a neighbor-aware restarter. HT-Graph combines
heterogeneous neighbor aggregation with a neighbor-aware
restarter, improving link prediction performance.

5. Hyper-parameters of HT-Graph training: The model
uses 1 HT-Graph layer with 2 attention heads, sampling 16
and 32 neighbors at 1-hop and 2-hop, respectively. Training is
performed with a batch size of 200, a learning rate of 0.001
(Adam optimizer), a dropout rate of 0.1, and a history length
of 50.

TABLE III
COMPREHENSIVE COMPARISON OF MODEL PERFORMANCE ACROSS DATASETS SHOWING BOTH AVERAGE PRECISION (AP%) AND AREA UNDER CURVE

(AUC%) METRICS FOR TRANSDUCTIVE AND INDUCTIVE LEARNING SETTINGS. MODELS COMPARED INCLUDE TGN, TIGER, NAT, R-ST (STATIC
ATTENTION), R-SEQ (SEQUENTIAL ATTENTION), R-NGH (NEIGHBOR ATTENTION), AND HTGRAPH. BEST RESULTS ARE SHOWN IN BOLD.

Type Dataset
Model Performance (AP% / AUC%)

TGN TIGER NAT R-st R-seq R-ngh HTGraph
AP AUC AP AUC AP AUC AP AUC AP AUC AP AUC AP AUC

Tr
an

sd
uc

tiv
e

H
om

og
en

eo
us

Tgbl-wiki-v2 97.26 98.14 98.91 98.84 98.52 98.32 98.63 98.53 98.72 98.66 99.15 98.99 99.23 99.04
Reddit 97.99 98.45 98.60 98.55 98.74 98.88 98.78 98.82 98.83 98.85 98.97 98.87 98.98 98.88
Enron 80.86 73.37 86.10 84.62 91.04 92.32 92.18 93.45 93.27 94.56 94.70 95.12 94.79 95.72

SocialEvolve 80.87 82.08 87.67 88.89 86.87 88.65 86.95 88.71 86.47 89.12 87.67 89.85 90.74 89.98
UCI 89.53 89.54 90.91 89.21 92.75 90.26 91.12 89.34 92.21 90.24 93.59 90.91 93.58 91.99

Tgbl-coin 89.89 90.56 94.36 91.62 97.55 98.07 97.67 98.19 97.79 98.27 98.88 98.73 98.92 98.78

H
et

er
og

en
eo

us AskUbuntu 76.28 75.29 82.28 75.69 92.32 92.55 92.84 92.91 93.06 93.18 93.22 93.61 93.32 93.74
MathOverflow 81.86 82.98 87.61 88.85 92.34 91.56 92.55 90.77 92.57 90.91 92.74 91.17 93.22 91.72

MovieLens 74.08 75.36 73.37 76.81 75.45 77.32 74.89 77.45 75.07 77.78 75.59 77.95 75.95 78.32
SuperUser 71.45 73.12 80.16 73.44 89.76 88.36 89.14 88.35 90.66 88.56 90.93 88.71 91.48 89.07

Stackoverflow 65.16 59.75 74.19 68.63 79.61 71.95 80.14 72.12 78.34 72.85 80.26 73.15 80.92 74.84

In
du

ct
iv

e

H
om

og
en

eo
us

Tgbl-wiki-v2 94.91 97.84 98.81 98.54 98.13 97.94 98.29 98.06 98.47 98.32 99.02 98.89 99.06 98.99
Reddit 94.34 97.63 98.44 98.25 98.46 98.52 98.54 98.57 98.69 98.60 98.72 98.59 98.75 98.62
Enron 75.72 70.43 84.89 82.07 92.06 92.78 92.72 92.84 93.06 92.98 93.87 94.98 94.24 95.03

SocialEvolve 88.10 75.28 88.76 90.51 90.06 92.20 90.45 92.45 91.07 93.05 92.22 94.12 92.87 94.26
UCI 83.21 81.65 89.99 88.42 89.29 86.92 90.17 87.08 91.65 88.56 92.39 90.48 92.67 90.62

Tgbl-coin 90.28 89.32 94.85 90.98 93.44 91.78 93.91 91.99 94.35 92.43 98.39 98.19 98.62 98.28

H
et

er
og

en
eo

us AskUbuntu 74.69 77.89 81.11 74.11 89.77 87.10 89.92 87.45 90.48 87.83 91.17 88.69 91.61 94.81
MathOverflow 80.42 81.37 85.29 86.46 88.02 85.92 88.22 86.21 88.77 86.89 91.02 89.41 92.08 90.44

MovieLens 72.06 75.12 74.43 77.86 74.93 77.51 75.03 77.74 75.24 78.09 75.42 80.95 75.54 82.21
SuperUser 70.23 69.03 77.47 69.89 87.26 84.51 87.66 84.72 88.05 85.43 90.76 86.34 91.33 88.90

Stackoverflow 64.82 59.09 69.23 67.97 76.74 69.18 77.12 69.43 77.45 69.89 78.73 70.67 79.32 72.47

B. HT-Graph Prediction Performance Analysis

The performance analysis shows that HT-Graph consistently
outperforms other models, achieving the highest AP and AUC
scores in both transductive and inductive settings across vari-
ous datasets. While models like Wikipedia and Reddit perform
well due to valid edge attributes, HT-Graph excels by using ad-
vanced techniques like joint neighborhood aggregation, which
improves link prediction by better capturing neighborhood
information. NAT, although strong, typically ranks second and
benefits from similar neighborhood aggregation, while TGN
performs the worst across the datasets.

TIGER, which outperforms TGN in all cases and despite
having dedicated neighbor awareness, TIGER still outperforms
NAT in some cases, emphasizes the importance of dual mem-
ory in link prediction. The performance gap between TGN
and NAT highlights the importance of capturing the local
neighborhood information for effective link prediction.

Heterogeneous datasets have lower AP and AUC scores due
to sparse connectivity. In sparse graphs, performance improves
from TGN to TIGER to NAT, with HT-Graph providing further
gains. In dense graphs, identifying relevant neighbors is key.

HT-Graph outperforms all its variants. Among homoge-
neous models, the R-ngh variant, which includes a neighbor-
aware restarter, performs best, while the R-st variant, using
a static restarter, performs worst due to its lack of dynamic
learning. The R-seq variant, which leverages a transformer for
historical sequences, surpasses TGN and NAT in most cases.

The integration of neighbor-awareness in R-ngh significantly
boosts performance, while adding heterogeneity further en-
hances HT-Graph’s ability to handle complex datasets.

HT-Graph continues to lead in AUC scores, demonstrating
its ability to accurately differentiate between true and false
edges. High AP and AUC scores show that HT-Graph excels
at both identifying and ranking true connections, making it
highly effective in link prediction tasks. Its success is due
to the robust combination of neighborhood-awareness, dual
memory, and the incorporation of heterogeneity, making it a
state-of-the-art model for complex graph-based predictions.

C. HT-Graph Efficiency Analysis

TGN is not included in this comparison due to its inherently
slow nature, as highlighted in several studies.

Table IV shows that HT-Graph trains faster than NAT
and TIGER. NAT converges in fewer epochs but has higher
per-epoch and total training time. TIGER requires the most
epochs but has the lowest per-epoch time. HT-Graph balances
efficiency and convergence, needing more epochs than NAT
but fewer than TIGER.

NAT’s frequent n-cache updates hinder parallelization, while
TIGER’s temporal neighbor sampling adds runtime overhead.
HT-Graph optimizes this with a neigh-store module, storing
recent 2-hop neighbors to reduce sampling and enable induc-
tive learning. It’s dual memory updates per batch, lowering
computational cost further.

TABLE IV
1. EFFICIENCY ANALYSIS: COMPARISON OF PER EPOCH TRAIN-TIME (IN SECONDS), TOTAL TIME (IN SECONDS), AND SPEED-UP ANALYSIS ACROSS
DIFFERENT DATASETS FOR BOTH TRANSDUCTIVE AND INDUCTIVE SETTINGS. 2. SCALABILITY ANALYSIS: SPEED-UP IS SHOWN FOR HT-GRAPH IN

1-GPU AND 2-GPU SETTINGS.

Efficiency analysis Scalability Analysis

Dataset
Model HT-Graph

TIGER NAT HT-Graph 1-GPU
(Total Time)

2-GPU
(Total Time)

Speed-up
(1-GPU vs 2-GPU)

Train Total Epoch Train Total Epoch Train Total Epoch 1-GPU 2-GPU Speed-up

Tr
an

sd
uc

tiv
e

H
om

og
en

eo
us

Tgbl-wiki-v2 32.9 41.5 9 58.14 70.88 4 29.2 37.02 7 37.02 30.02 1.23x
Reddit 193.42 224.16 15 255.45 306.57 6 187.32 215.22 17 215.22 159.88 1.34x
Enron 17.58 20.81 19 43.94 51.93 3 15.22 18.72 12 18.72 11.35 1.65x

SocialEvolve 300.10 352.04 16 724.38 867.1 5 244.5 374.92 11 374.92 232.08 1.62x
UCI 17.09 20.11 9 22.34 41.28 3 14.44 17.65 6 17.65 12.71 1.39x

Tgbl-coin 6890.9 7860.22 7 8055.25 9609.14 3 6289.36 7003.57 7 7003.57 4982.48 1.41x

H
et

er
og

en
eo

us AskUbuntu 198.49 255.97 15 330.49 396.2 5 194.28 243.33 17 243.33 196.77 1.24x
MathOverflow 91.5 117.97 25 179.21 213.4 6 90.21 115.83 20 115.83 96.23 1.20x

MovieLens 15.53 20.95 27 32.25 40.96 8 14.3 19.9 19 19.9 16.96 1.17x
SuperUser 325.36 413.66 13 507.32 609.89 3 320 426 12 426 356.53 1.19x

Stackoverflow 22260 34363.16 - 52965 65248 - 2017.31 32112 - 32112 27053.91 1.19x
Average Speedup 1.42x

D. HT-Graph Scalability Analysis
Table IV shows an average speedup of 1.42x across datasets.

Dense graphs like Enron and SocialEvolve achieve the high-
est gains (1.65x, 1.62x) due to better GPU utilization with
higher edge counts. Homogeneous graphs generally see better
speedups as their uniform edge types enable more efficient
memory access and computation.

Heterogeneous datasets like AskUbuntu and MovieLens
show moderate speedups (1.17x–1.24x) due to the overhead of
handling multiple edge types. Semantic attention computation
adds extra cost, increasing restart times and reducing speedup
efficiency.

Large datasets like StackOverflow achieve 1.19x speedup
despite higher memory demands. HT-Graph mitigates this
challenge with chunk-based processing and efficient memory
management, ensuring stable performance.

VI. CONCLUSION

HT-Graph effectively addresses challenges in heterogeneous
continuous-time dynamic graphs by introducing neighbor-
aware memory, efficient parallelization, and scalable training.
Future work includes exploring hypergraph architectures, dis-
tributed computing for large graphs, and real-time adaptation
to enhance scalability, versatility, and applicability to complex,
dynamic networks.

REFERENCES

[1] Y. Wang, Y.-Y. Chang, Y. Liu, J. Leskovec, and P. Li, “Inductive
representation learning in temporal networks via causal anonymous
walks,” arXiv preprint arXiv:2101.05974, 2021.

[2] Y. Luo and P. Li, “Neighborhood-aware scalable temporal network
representation learning,” in Learning on Graphs Conference. PMLR,
2022, pp. 1–1.

[3] Y. Zhang, Y. Xiong, Y. Liao, Y. Sun, Y. Jin, X. Zheng, and Y. Zhu,
“Tiger: temporal interaction graph embedding with restarts,” in Pro-
ceedings of the ACM Web Conference 2023, 2023, pp. 478–488.

[4] E. Rossi, B. Chamberlain, F. Frasca, D. Eynard, F. Monti, and M. Bron-
stein, “Temporal graph networks for deep learning on dynamic graphs,”
arXiv preprint arXiv:2006.10637, 2020.

[5] H. Dai, Y. Wang, R. Trivedi, and L. Song, “Deep coevolutionary
network: Embedding user and item features for recommendation,” arXiv
preprint arXiv:1609.03675, 2016.

[6] S. Kumar, X. Zhang, and J. Leskovec, “Predicting dynamic embedding
trajectory in temporal interaction networks,” in Proceedings of the 25th
ACM SIGKDD international conference on Knowledge discovery and
data mining. ACM, 2019.

[7] R. Trivedi, M. Farajtabar, P. Biswal, and H. Zha, “Dyrep: Learning
representations over dynamic graphs,” in International conference on
learning representations, 2019.

[8] L. Yang, Z. Xiao, W. Jiang, Y. Wei, Y. Hu, and H. Wang, “Dynamic het-
erogeneous graph embedding using hierarchical attentions,” in Advances
in Information Retrieval: 42nd European Conference on IR Research,
ECIR 2020, Lisbon, Portugal, April 14–17, 2020, Proceedings, Part II
42. Springer, 2020, pp. 425–432.

[9] H. Xue, L. Yang, W. Jiang, Y. Wei, Y. Hu, and Y. Lin, “Modeling
dynamic heterogeneous network for link prediction using hierarchical
attention with temporal rnn,” 2020.

[10] C. Yuan, J. Li, W. Zhou, Y. Lu, X. Zhang, and S. Hu, “Dyhgcn: A
dynamic heterogeneous graph convolutional network to learn users’
dynamic preferences for information diffusion prediction,” 2020.

[11] M. Schlichtkrull, T. N. Kipf, P. Bloem, R. van den Berg, I. Titov,
and M. Welling, “Modeling relational data with graph convolutional
networks,” 2017.

[12] X. Wang, H. Ji, C. Shi, B. Wang, P. Cui, P. Yu, and Y. Ye, “Heteroge-
neous graph attention network,” 2021.

[13] M. Besta and T. Hoefler, “Parallel and distributed graph neural
networks: An in-depth concurrency analysis,” 2022. [Online]. Available:
https://arxiv.org/abs/2205.09702

[14] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, pp. 1735–80, 12 1997.

[15] K. Cho, B. van Merrienboer, C. Gulcehre, D. Bahdanau, F. Bougares,
H. Schwenk, and Y. Bengio, “Learning phrase representations using rnn
encoder-decoder for statistical machine translation,” 2014.

[16] L. Li, L. Duan, J. Wang, C. He, Z. Chen, G. Xie, S. Deng, and Z. Luo,
“Memory-enhanced transformer for representation learning on temporal
heterogeneous graphs,” Data Science and Engineering, vol. 8, no. 2, pp.
98–111, 2023.

[17] X. Wang, D. Lyu, M. Li, Y. Xia, Q. Yang, X. Wang, X. Wang, P. Cui,
Y. Yang, B. Sun et al., “Apan: Asynchronous propagation attention
network for real-time temporal graph embedding,” in Proceedings of
the 2021 international conference on management of data, 2021, pp.
2628–2638.

[18] H. Zhou, D. Zheng, I. Nisa, V. Ioannidis, X. Song, and G. Karypis,
“Tgl: A general framework for temporal gnn training on billion-scale
graphs,” arXiv preprint arXiv:2203.14883, 2022.

[19] D. Xu, C. Ruan, E. Korpeoglu, S. Kumar, and K. Achan, “In-
ductive representation learning on temporal graphs,” arXiv preprint
arXiv:2002.07962, 2020.

[20] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò, and
Y. Bengio, “Graph attention networks,” 2018.

